Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Med Virol ; 95(3): e28609, 2023 03.
Article in English | MEDLINE | ID: covidwho-2254690

ABSTRACT

The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a major public health threat worldwide and emphasizes an urgent need for effective therapeutics. Recently, Ordonez et al. identified sulforaphane (SFN) as a novel coronavirus inhibitor both in vitro and in mice, but the mechanism of action remains elusive. In this study, we independently discovered SFN for its inhibitory effect against SARS-CoV-2 using a target-based screening approach, identifying the viral 3-chymotrypsin-like protease (3CLpro ) as a target of SFN. Mechanistically, SFN inhibits 3CLpro in a reversible, mixed-type manner. Moreover, enzymatic kinetics studies reveal that SFN is a slow-binding inhibitor, following a two-step interaction. Initially, an encounter complex forms by specific binding of SFN to the active pocket of 3CLpro ; subsequently, the isothiocyanate group of SFN as "warhead" reacts covalently to the catalytic cysteine in a slower velocity, stabilizing the SFN-3CLpro complex. Our study has identified a new lead of the covalent 3CLpro inhibitors which has potential to be developed as a therapeutic agent to treat SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , Chymases , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Isothiocyanates/pharmacology , Antiviral Agents/therapeutic use
2.
Cell Death Discov ; 8(1): 303, 2022 Jul 02.
Article in English | MEDLINE | ID: covidwho-1915265
4.
International Journal of Biological Sciences ; 18(8):3237-3250, 2022.
Article in English | ProQuest Central | ID: covidwho-1842940

ABSTRACT

G protein-coupled receptors (GPCRs) are the largest family of druggable targets, and their biological functions depend on different ligands and intracellular interactomes. Some microRNAs (miRNAs) bind as ligands to RNA-sensitive toll-like receptor 7 to regulate the inflammatory response, thereby contributing to the pathogenesis of cancer or neurodegeneration. It is unknown whether miRNAs bind to angiotensin II (Ang II) type 2 receptor (AGTR2), a critical protective GPCR in cardiovascular diseases, as ligands or intracellular interactomes. Here, screening for miRNAs that bind to AGTR2, we identified and confirmed that the pre-miRNA hsa-let-7a-2 non-competitively binds to the intracellular third loop of AGTR2. Functionally, intracellular hsa-let-7a-2 overexpression suppressed the Ang II-induced AGTR2 effects such as cAMP lowering, RhoA inhibition, and activation of Src homology 2 domain-containing protein-tyrosine phosphatase 1, whereas hsa-let-7a-2 knockdown enhanced these effects. Consistently, overexpressed hsa-let-7a-2 restrained the AGTR2-induced antiproliferation, antimigration, and proapoptosis of cells, and vasodilation of mesenteric arteries. Our findings demonstrated that hsa-let-7a-2 is a novel intracellular partner of AGTR2 that negatively regulates AGTR2-activated signals.

5.
Front Pharmacol ; 12: 743623, 2021.
Article in English | MEDLINE | ID: covidwho-1417122

ABSTRACT

Respiratory viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV)-1, SARS-CoV-2, influenza A viruses, and respiratory syncytial virus, pose a serious threat to society. Based on the guiding principles of "holism" and "syndrome differentiation and treatment", traditional Chinese medicine (TCM) has unique advantages in the treatment of respiratory virus diseases owing to the synergistic effect of multiple components and targets, which prevents drug resistance from arising. According to TCM theory, there are two main strategies in antiviral treatments, namely "dispelling evil" and "fu zheng". Dispelling evil corresponds to the direct inhibition of virus growth and fu zheng corresponds to immune regulation, inflammation control, and tissue protection in the host. In this review, current progress in using TCMs against respiratory viruses is summarized according to modern biological theories. The prospects for developing TCMs against respiratory viruses is discussed to provide a reference for the research and development of innovative TCMs with multiple components, multiple targets, and low toxicity.

6.
Antiviral Res ; 190: 105075, 2021 06.
Article in English | MEDLINE | ID: covidwho-1290345

ABSTRACT

The emerging SARS-CoV-2 infection is the cause of the global COVID-19 pandemic. To date, there are limited therapeutic options available to fight this disease. Here we examined the inhibitory abilities of two broad-spectrum antiviral natural products chebulagic acid (CHLA) and punicalagin (PUG) against SARS-CoV-2 viral replication. Both CHLA and PUG reduced virus-induced plaque formation in Vero-E6 monolayer at noncytotoxic concentrations, by targeting the enzymatic activity of viral 3-chymotrypsin-like cysteine protease (3CLpro) as allosteric regulators. Our study demonstrates the potential use of CHLA and PUG as novel COVID-19 therapies.


Subject(s)
Antiviral Agents/pharmacology , Benzopyrans/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Glucosides/pharmacology , Hydrolyzable Tannins/pharmacology , SARS-CoV-2/drug effects , Allosteric Site , Animals , Antiviral Agents/chemistry , Benzopyrans/chemistry , COVID-19/virology , Chlorocebus aethiops , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Drug Discovery , Glucosides/chemistry , Molecular Docking Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2/metabolism , Vero Cells , Virus Replication/drug effects , COVID-19 Drug Treatment
7.
Acta Pharm Sin B ; 11(12): 3879-3888, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1230356

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the pandemic coronavirus disease 2019 (COVID-19), which threatens human health and public safety. In the urgent campaign to develop anti-SARS-CoV-2 therapies, the initial entry step is one of the most appealing targets. In this review, we summarize the current understanding of SARS-CoV-2 cell entry, and the development of targeted antiviral strategies. Moreover, we speculate upon future directions toward next-generation of SARS-CoV-2 entry inhibitors during the upcoming post-pandemic era.

8.
J Med Virol ; 93(1): 300-310, 2021 01.
Article in English | MEDLINE | ID: covidwho-1206791

ABSTRACT

The global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), named coronavirus disease 2019, has infected more than 8.9 million people worldwide. This calls for urgent effective therapeutic measures. RNA-dependent RNA polymerase (RdRp) activity in viral transcription and replication has been recognized as an attractive target to design novel antiviral strategies. Although SARS-CoV-2 shares less genetic similarity with SARS-CoV (~79%) and Middle East respiratory syndrome coronavirus (~50%), the respective RdRps of the three coronaviruses are highly conserved, suggesting that RdRp is a good broad-spectrum antiviral target for coronaviruses. In this review, we discuss the antiviral potential of RdRp inhibitors (mainly nucleoside analogs) with an aim to provide a comprehensive account of drug discovery on SARS-CoV-2.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/virology , Enzyme Inhibitors/therapeutic use , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/enzymology , Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Nucleosides/pharmacology , Nucleosides/therapeutic use , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/metabolism
9.
Cell Biosci ; 11(1): 45, 2021 Feb 28.
Article in English | MEDLINE | ID: covidwho-1105737

ABSTRACT

BACKGROUND: In the urgent campaign to develop therapeutics against SARS-CoV-2, natural products have been an important source of new lead compounds. RESULTS: We herein identified two natural products, ginkgolic acid and anacardic acid, as inhibitors using a high-throughput screen targeting the SARS-CoV-2 papain-like protease (PLpro). Moreover, our study demonstrated that the two hit compounds are dual inhibitors targeting the SARS-CoV-2 3-chymotrypsin-like protease (3CLpro) in addition to PLpro. A mechanism of action study using enzyme kinetics further characterized the two compounds as irreversible inhibitors against both 3CLpro and PLpro. Significantly, both identified compounds inhibit SARS-CoV-2 replication in vitro at nontoxic concentrations. CONCLUSIONS: Our finding provides two novel natural products as promising SARS-CoV-2 antivirals.

10.
Evid Based Complement Alternat Med ; 2020: 4979850, 2020.
Article in English | MEDLINE | ID: covidwho-894917

ABSTRACT

Traditional Chinese medicines (TCMs) have proven to possess advantages in counteracting virus infections according to clinical practices. It's therefore of great value to discover novel antivirals from TCMs. In this paper, One hundred medicinal plants which have been included in TCM prescriptions for antiviral treatment were selected and prefractionated into 5 fractions each by sequentially using cyclohexane, dichloromethane, ethyl acetate, n-butanol, and water. 500 TCM-simplified extracts were then subjected to a phenotypic screening using a recombinant IAV expressing Gaussia luciferase. Ten TCM fractions were identified to possess antiviral activities against influenza virus. The IC50's of the hit fractions range from 1.08 to 6.45 µg/mL, while the SIs, from 7.52 to 98.40. Furthermore, all the ten hit fractions inhibited the propagation of progeny influenza virus significantly at 20 µg/mL. The hit TCM fractions deserve further isolation for responsible constituents leading towards anti-influenza drugs. Moreover, a library consisting of 500 simplified TCM extracts was established, facilitating antiviral screening in quick response to emerging and re-emerging viruses such as Ebola virus and current SARS-CoV-2 pandemic.

11.
IEEE/ACM Trans Comput Biol Bioinform ; 18(4): 1230-1233, 2021.
Article in English | MEDLINE | ID: covidwho-695498

ABSTRACT

Recently, it was confirmed that ACE2 is the receptor of SARS-CoV-2, the pathogen causing the recent outbreak of severe pneumonia around the world. It is confused that ACE2 is widely expressed across a variety of organs and is expressed moderately but not highly in lung, which, however, is the major infected organ. Therefore, we hypothesized that there could be some other genes playing key roles in the entry of SARS-CoV-2 into human cells. Here we found that AGTR2 (angiotensin II receptor type 2), a G-protein coupled receptor, has interaction with ACE2 and is highly expressed in lung with a high tissue specificity. More importantly, simulation of 3D structure based protein-protein interaction reveals that AGTR2 shows a higher binding affinity with the Spike protein of SARS-CoV-2 than ACE2 (energy: -8.2 vs. -5.1 [kcal/mol]). A number of compounds, biologics and traditional Chinese medicine that could decrease the expression level of AGTR2 were predicted. Finally, we suggest that AGTR2 could be a putative novel gene for the entry of SARS-CoV-2 into human cells, which could provide different insight for the research of SARS-CoV-2 proteins with their receptors.


Subject(s)
COVID-19/genetics , COVID-19/virology , Receptor, Angiotensin, Type 2/genetics , Receptors, Virus/genetics , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/physiology , Antiviral Agents/pharmacology , COVID-19/physiopathology , Computational Biology , Computer Simulation , Drug Evaluation, Preclinical , Humans , Models, Molecular , Protein Interaction Maps , Receptor, Angiotensin, Type 2/chemistry , Receptor, Angiotensin, Type 2/physiology , Receptors, Virus/chemistry , Receptors, Virus/physiology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/physiology , Transcriptome/drug effects , Virus Internalization
12.
J Ethnopharmacol ; 258: 112932, 2020 Aug 10.
Article in English | MEDLINE | ID: covidwho-165277

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese Medicine (TCM) has been widely used as an approach worldwide. Chinese Medicines (CMs) had been used to treat and prevent viral infection pneumonia diseases for thousands of years and had accumulated a large number of clinical experiences and effective prescriptions. AIM OF THE STUDY: This research aimed to systematically excavate the classical prescriptions of Chinese Medicine (CM), which have been used to prevent and treat Pestilence (Wenbing, Wenyi, Shiyi or Yibing) for long history in China, to obtain the potential prescriptions and ingredients to alternatively treat COVID-19. MATERIALS AND METHODS: We developed the screening system based on data mining, molecular docking and network pharmacology. Data mining and association network were used to mine the high-frequency herbs and formulas from ancient prescriptions. Virtual screening for the effective components of high frequency CMs and compatibility Chinese Medicine was explored by a molecular docking approach. Furthermore, network pharmacology method was used to preliminarily uncover the molecule mechanism. RESULTS: 574 prescriptions were obtained from 96,606 classical prescriptions with the key words to treat "Warm diseases (Wenbing)", "Pestilence (Wenyi or Yibing)" or "Epidemic diseases (Shiyi)". Meanwhile, 40 kinds of CMs, 36 CMs-pairs, 6 triple-CMs-groups existed with high frequency among the 574 prescriptions. Additionally, the key targets of SARS-COV-2, namely 3CL hydrolase (Mpro) and angiotensin-converting enzyme 2(ACE2), were used to dock the main ingredients from the 40 kinds by the LigandFitDock method. A total of 66 compounds components with higher frequency were docked with the COVID-19 targets, which were distributed in 26 kinds of CMs, among which Gancao (Glycyrrhizae Radix Et Rhizoma), HuangQin (Scutellariae Radix), Dahuang (Rhei Radix Et Rhizome) and Chaihu (Bupleuri Radix) contain more potential compounds. Network pharmacology results showed that Gancao (Glycyrrhizae Radix Et Rhizoma) and HuangQin (Scutellariae Radix) CMs-pairs could also interact with the targets involving in immune and inflammation diseases. CONCLUSIONS: These results we obtained probably provided potential candidate CMs formulas or active ingredients to overcome COVID-19. Prospectively, animal experiment and rigorous clinic studies are needed to confirm the potential preventive and treat effect of these CMs and compounds.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Pneumonia, Viral/drug therapy , COVID-19 , Coronavirus Infections/virology , Data Mining , Humans , Models, Molecular , Pandemics , Plant Extracts , Pneumonia, Viral/virology , Protein Conformation , SARS-CoV-2 , Viral Proteins
SELECTION OF CITATIONS
SEARCH DETAIL